Text Mining with R: A Tidy Approach

Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you'll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Silge, Julia
Otros Autores: Robinson, David
Formato: Libro
Lenguaje:inglés
Publicado: New Delhi Shroff Publishers & Distributors Pvt. Ltd. 2019
Materias:
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you'll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You'll learn how tidytext and other tidy tools in R can make text analysis easier and more effective. The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You'll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media.
Descripción Física:xii, 179 p.
ISBN:9789352135769