Predictive analytics and data mining : concepts and practice with RapidMiner /
Saved in:
Main Authors: | , |
---|---|
格式: | 图书 |
语言: | 英语 |
出版: |
Amsterdam :
Elsevier/Morgan Kaufmann, Morgan Kaufmann is an imprint of Elsevier,
[2015]
|
主题: | |
在线阅读: | E-book - Full text from ebookcentral |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
MARC
LEADER | 00000cam a22000007i 4500 | ||
---|---|---|---|
001 | 18322211 | ||
005 | 20230913114130.0 | ||
008 | 141001t20152015ne a b 001 0 eng d | ||
100 | |e author. |a , Deshpande, Balachandre, |9 59747 | ||
906 | |a 7 |b cbc |c copycat |d 2 |e ncip |f 20 |g y-gencatlg | ||
925 | 0 | |a acquire |b 1 shelf copy |x policy default | |
955 | |b rl09 2017-12-26 z-processor |i rl09 2018-01-18 ; to BCCD | ||
010 | |a 2014952930 | ||
015 | |a GBB4C2325 |2 bnb | ||
015 | |a GBB4C4252 |2 bnb | ||
016 | 7 | |a 016931196 |2 Uk | |
016 | 7 | |a 016933123 |2 Uk | |
020 | |a 9780128014608 (pbk.) | ||
020 | |a 0128014601 (pbk.) | ||
020 | |a 9780128016503 | ||
020 | |a 0128016507 | ||
035 | |a (OCoLC)ocn900080446 | ||
040 | |a IND |b eng |c IND |e rda |d YDXCP |d BTCTA |d UKMGB |d LND |d OCLCF |d CHVBK |d NJT |d CNNAI |d OCLCQ |d I8M |d OCLCO |d MMV |d THHCU |d OCLCQ |d DLC | ||
042 | |a lccopycat | ||
050 | 0 | 0 | |a QA76.9.D343 |b K68 2015 |
082 | 0 | 4 | |a 006.312 K87 2015 |
245 | 1 | 0 | |a Predictive analytics and data mining : |b concepts and practice with RapidMiner / |c Vijay Kotu, Bala Deshpande, PhD. |
264 | 1 | |a Amsterdam : |b Elsevier/Morgan Kaufmann, Morgan Kaufmann is an imprint of Elsevier, |c [2015] | |
264 | 4 | |c ©2015 | |
300 | |a xix, 425 pages : |b illustrations ; |c 24 cm | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a unmediated |b n |2 rdamedia | ||
338 | |a volume |b nc |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | 0 | |g Machine generated contents note: |g 1.1. |t What Data Mining Is -- |g 1.2. |t What Data Mining Is Not -- |g 1.3. |t Case for Data Mining -- |g 1.4. |t Types of Data Mining -- |g 1.5. |t Data Mining Algorithms -- |g 1.6. |t Roadmap for Upcoming Chapters -- |g 2.1. |t Prior Knowledge -- |g 2.2. |t Data Preparation -- |g 2.3. |t Modeling -- |g 2.4. |t Application -- |g 2.5. |t Knowledge -- |g 3.1. |t Objectives of Data Exploration -- |g 3.2. |t Data Sets -- |g 3.3. |t Descriptive Statistics -- |g 3.4. |t Data Visualization -- |g 3.5. |t Roadmap for Data Exploration -- |g 4.1. |t Decision Trees -- |g 4.2. |t Rule Induction -- |g 4.3. |t k-Nearest Neighbors -- |g 4.4. |t Naïve Bayesian -- |g 4.5. |t Artificial Neural Networks -- |g 4.6. |t Support Vector Machines -- |g 4.7. |t Ensemble Learners -- |g 5.1. |t Linear Regression -- |g 5.2. |t Logistic Regression -- |g 6.1. |t Concepts of Mining Association Rules -- |g 6.2. |t Apriori Algorithm -- |g 6.3. |t FP-Growth Algorithm -- |g 7.1. |t Types of Clustering Techniques -- |g 7.2. |t k-Means Clustering -- |g 7.3. |t DBSCAN Clustering -- |g 7.4. |t Self-Organizing Maps -- |g 8.1. |t Confusion Matrix (or Truth Table) -- |g 8.2. |t Receiver Operator Characteristic (ROC) Curves and Area under the Curve (AUC) -- |g 8.3. |t Lift Curves -- |g 8.4. |t Evaluating the Predictions: Implementation -- |g 9.1. |t How Text Mining Works -- |g 9.2. |t Implementing Text Mining with Clustering and Classification -- |g 10.1. |t Data-Driven Approaches -- |g 10.2. |t Model-Driven Forecasting Methods -- |g 11.1. |t Anomaly Detection Concepts -- |g 11.2. |t Distance-Based Outlier Detection -- |g 11.3. |t Density-Based Outlier Detection -- |g 11.4. |t Local Outlier Factor -- |g 12.1. |t Classifying Feature Selection Methods -- |g 12.2. |t Principal Component Analysis -- |g 12.3. |t Information Theory-Based Filtering for Numeric Data -- |g 12.4. |t Chi-Square-Based Filtering for Categorical Data -- |g 12.5. |t Wrapper-Type Feature Selection -- |g 13.1. |t User Interface and Terminology -- |g 13.2. |t Data Importing and Exporting Tools -- |g 13.3. |t Data Visualization Tools -- |g 13.4. |t Data Transformation Tools -- |g 13.5. |t Sampling and Missing Value Tools -- |g 13.6. |t Optimization Tools. |
650 | 0 | |a Data mining. | |
650 | 0 | |a Consumer behavior. | |
650 | 4 | |a Minería de datos. |9 59748 | |
650 | 7 | |a Consumer behavior. |2 fast |0 (OCoLC)fst00876238 | |
650 | 7 | |a Data mining. |2 fast |0 (OCoLC)fst00887946 | |
650 | 7 | |a Data Mining |2 gnd | |
650 | 7 | |a RapidMiner |2 gnd |9 59749 | |
650 | 7 | |a Datenanalyse |2 gnd |9 59750 | |
650 | 7 | |a Prognoseverfahren |2 gnd |9 59751 | |
700 | 1 | |a Deshpande, Balachandre, |e author. |9 59752 | |
856 | 4 | 1 | |u http://londonmet.eblib.com/patron/FullRecord.aspx?p=1875324 |z E-book - Full text from ebookcentral |
955 | |a pc27 2014-10-01 |a rl06 2017-02-03 to SMA | ||
999 | |c 423925 |d 423925 |